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23 ABSTRACT 

24 Prymnesium parvum has become more prevalent in water resources of the southern United 

25 States. Since the potential impacts of P. parvum are relatively well known, especially its 

26 capability to severely affect fish, managers have sought efficacious, environmentally sound and 

27 socially acceptable strategies for mitigating this noxious species. Laboratory testing was used to 

28 identify an effective algaecide for control of P. parvum from Texas, Arizona, Florida, North 

29 Carolina and South Carolina. Cutrine®-Plus at 0.2 mg CulL significantly decreased the density of 

30 P. parvum in samples from all of these locations. Both copper sulfate and Phycomycin® were 

31 less effective for controlling the population growth of P. parvum. The predicted response from 

32 the laboratory study was confirmed in the field at the Arizona site. Strategic use of Cutrine® -Plus 

33 in larger water resources could provide toxin-free refugia to allow some fish to survive and 

34 repopulate the water resource when the golden alga infestation abates. 

35 

36 KEY TERMS: algae, Prymnesium parvum, fish, toxicology, environmental impacts, treatment, 

37 copper, peroxide, toxin, mitigation 

38 

39 INTRODUCTION 

40 

41 Prymnesium parvum N. Carter is commonly referred to as the "golden alga." This 

42 haptophyte protist (Green and Leadbetter, 1994) is a relatively small ( -10 microns), generally 

43 halophilic organism that intermittently produces an ichthyotoxin. This organism is widely 

44 distributed and has been implicated in numerous and extensive fish kills in brackish waters and 

45 inland waters with relatively high mineral content on five continents (Guo et al., 1996; Holdway 
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46 et al., 1978; James and de la Cruz, 1989; Kaartvedt et al., 1991; Lewitus et al., 2003; Lindholm 

47 et al., 1999; Otterstrom and Steemann-Nielsen, 1940) posing a difficult challenge for managers 

48 of some critical water resources. 

49 Prymnesium parvum poses unusual problems as a planktonic organism (Graneli, 2006; 

50 Sunda et al., 2006; Uronen et al., 2007). Most noxious algae or planktonic organisms cause 

51 problems such as formation of suspended solids, increased oxygen demand and pH shifts in 

52 lentic waters due to dense growths as well as production of taste and odor compounds. 

53 Prymnesium parvum produces a suite of toxins called prymnesins that have ichthyotoxic, 

54 cytotoxic, and hemolytic effects (Shilo 1971; Shilo 1981 ). The toxins have been relatively 

55 difficult to isolate and characterize. The lack of a strong correlation between P. parvum cell 

56 density and toxicity (Shilo, 1981) is likely due to enhancement of toxicity or potency by several 

57 environmental factors such as temperature< 30°C (Baker et al., 2007; Shilo and Aschner, 1953), 

58 pH > 7.0 and phosphorus (Shilo, 1971) or nitrogen limitation (Graneli and Johansson, 2003). 

59 Although dense growths of P. parvum may color the water yellow to copper-brown or rust, 

60 massive fish kills may not be accompanied by visibly notable "blooms" of golden algae. The P. 

61 parvum ichthyotoxin affects gill-breathing aquatic animals including fish, brachiated tadpoles 

62 and mollusks (Shilo, 1967) and causes loss of selective permeability of gill epithelial cells and 

63 subsequent mortality (Ulitzer and Shilo, 1966; Shilo, 1967). 

64 Periodic or intermittent production of ichthyotoxin may complicate a risk-based decision 

65 regarding intervention when faced with an encroachment or "bloom" of P. parvum in a critical 

66 water resource. But the record of massive fish kills associated with this haptopyte protist 

67 compels the decision to intervene if some criteria are met (e.g. early detection, ability for rapid 

68 response, potential maintenance of P. parvum-free refugia for fish and other potentially affected 

3 
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69 organisms, etc.). When problematic algae interfere with critical water resource usages and 

70 immediate response is required, algaecides can often provide relief and rapidly restore the 

71 usages. 

72 In order to support water resource management and discern potential tactics that can be 

73 used to control outbreaks of P. parvum, additional information is needed regarding exposures of 

74 algaecides that may control the population growth of these haptophytes. The objectives of this 

75 research were: 1) to verify ichthyotoxin production by samples of P. parvum; 2) to measure 

76 responses of samples of P. parvum from five sources to algaecide exposures in laboratory tests; 

77 3) to assess the potential for use of an algaecide in field situations; and 4) to confirm algaecide 

78 effectiveness in a field application. 

79 

80 MATERIALS AND METHODS 

81 

82 Samples of P. parvum. Water samples for this study containing P. parvum were 

83 collected from: 1) Lake Whitney near Clifton, Texas (31 o 57' Nl9r 24' W), 2) Water Ranch 

84 Lake near Gilbert, Arizona (33 o 22' N/111 o 45' W), 3) Stormwater Lake near Sarasota, Florida 

85 (27° 19' N/82° 32' W), 4) City Lake near High Point, North Carolina (35° 51' N/80° 12' W), 

86 and 5) Stormwater Pond near Socastee, South Carolina (33 o 41' N/79° 00' W). These sites are 

87 designated TX, AZ, FL, NC and SC, respectively. From each site, composite samples of at least 

88 15 liters of water were collected about 20 em below the surface (since P. parvum is sensitive to 

89 UV radiation; Smith, 2005). Both cell counts (microscopy) and an ichthyotoxin bioassay were 

90 used to confirm the presence and activity of P. parvum. The water samples were stored on ice 

4 
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1 
2 

.,. 91 and shipped expeditiously to the laboratory at Clemson University where analyses commenced 
5 
6 92 upon arrival. 
7 
8 93 
9 
10 
11 94 Ichthyotoxin production by samples of P. parvum. A bioassay involving fish was used 
12 
13 95 to estimate P. parvum activity in terms of ichthyotoxin production (Sager et al., 2007). This 14 
15 
16 

96 bioassay identifies waters with sufficient toxin (or are developing sufficient toxin concentrations) 
17 
18 97 to pose potential risks to fish in the water resource and is useful for evaluation of the intensity of 
19 
20 98 ichthyotoxin production to aid a decision regarding algaecide treatment. The assay involves 21 
22 
23 

99 exposing fish (larval Pimephales promelas, fathead minnow) to the water in question as well as 
24 
25 100 dilutions of that water. The fish used were <24 hour- old larvae and were obtained from a 
26 
27 
28 

101 culture in the Clemson University Aquatic Laboratory (Johnson et al., 2008). In the assay, the P. 
29 

\) 102 parvum ichthyotoxin potency can be augmented by the cation DADPA (3,3-
"' 
32 103 diaminodipropylamine) which serves as a cofactor or promoter in laboratory tests by increasing 33 
34 
35 

104 the sensitivity of fish to toxicant already present in the water (Ulitzer and Shilo, 1966; Ulitzer 
36 
37 I 05 and Shilo, 1964 ). For assessment of these samples, the promoter was not used since the <24 
38 
39 I 06 hour- old larval P. promelas were relatively sensitive to the P. parvum ichthyotoxin. Four 40 
41 
42 

107 replicates, containing ten fish per replicate, containing 200 mL of water in 250 mL beakers were 
43 
44 108 used for each dilution (100, 50, 25, 12.5, and 6.25%) of sample water along with a control 
45 
46 109 consisting of moderately hard laboratory water (Johnson et al., 2008). Water characteristics were 47 
48 
49 110 measured prior to testing (Table 1). As recommended in Sager et al. (2007), all assays were 
50 
51 Ill conducted at 28°C. 
52 
53 112 
54 
55 
56 
r:.7 

o8 
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1 
2 

113 ... Responses of samples of P. parvum to algaecide exposures in laboratory tests. 
5 
6 114 Preparation of stock algaecide solutions for laboratory experiments. Three algaecides (copper 
7 
8 115 
9 

sulfate pentahydrate, Cutrine®-Plus, and Phycomycin®) were evaluated for efficacy in controlling 

10 
116 11 samples of P. parvum (Table 2). Copper sulfate pentahydrate (-25.5% copper; Sigma Chemical 

12 
13 117 Co., P.O. Box 14508, St. Louis, MO 63178 USA) is a non-chelated form of copper and is 
14 
15 118 
16 

representative of the common copper salt used as an algaecide. Cutrine®-Plus is a chelated-
17 

119 18 copper containing compound (Cu2C03), with an elemental copper concentration of 9% in the 
19 
20 120 form of mixed copper- ethanolamine complexes (Applied Biochemists, 2007a). Stock algaecide 
21 
22 121 
23 

solutions for treatments with copper sulfate pentahydrate and Cutrine®-Plus (100 mg CuI L) 
24 
25 122 were prepared using NANOpure™ water within four hours prior to experiment initiation. 
26 
27 123 Phycomycin®is sodium carbonate peroxyhydrate (Applied Biochemists, 2007b) and was applied 28 
29 124 directly in granular form to initiate these treatments in the laboratory experiments. 

32 125 Algal toxicity experiments. Algal toxicity experiments evaluating copper sulfate 
33 
34 126 
35 

pentahydrate and Cutrine®-Plus were initiated using four replicates of treatment concentrations 

36 
127 37 of 0.2, 0.4, 0.6, 0.8, and 1.0 mg CuI L as algaecide, and an untreated control (Fitzgerald and 

38 
39 128 Jackson, 1979; Murray-Guide et al., 2002; USEPA, 2002). Experiments with Phycomycin®used 
40 
41 129 
42 

four replicates of treatment concentrations of 0.5, 1.0, 3.0, 5.0, and 10.0 mg H20 2 I Las 

43 
130 44 algaecide, and an untreated control. Experimental chambers consisted of static, non-renewal 200 

45 
46 131 mL volumes of treated or untreated site waters containing P. parvum in Erlenmeyer flasks and 
47 
48 132 
49 

were swirled once daily by hand. Exposure duration for each experiment was 96 hours. A 16:8 
50 
51 133 hour light-dark cycle was used, with "cool white" fluorescent lighting at an intensity of 86 ± 8.6 
52 
53 134 
54 

f..lE I m2 I s. Exposure chambers were maintained at a temperature of 22 ± 2 OC (modified from 
55 

135 56 APHA, 1998). Total copper concentrations were measured using a Perkin-Elmer 5100 PC flame 
f'\7 

0::1 
60 6 
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136 and graphite furnace atomic absorption (AA) spectrometer (method 3010-B; APHA 1998). 

137 Water characteristics (pH, dissolved oxygen, conductivity, total alkalinity, total hardness, total 

138 nitrogen, total phosphorus, and temperature) were measured according to APHA (1998) 

139 methods. 

140 Algal Response Parameters. Response parameters measured for the P. parvum -algaecide 

141 toxicity experiments included chlorophyll a concentrations and cell densities. Chlorophyll a was 

142 extracted according to United States Environmental Protection Agency (USEPA) method 445.0 

143 (Arar and Collins, 1997) and measured using a SpectraMax® 190 Gemini 96 well plate 

144 spectrofluorometer (Molecular Devices Corporation, Sunnyvale, CA 94089). Fluorometeric 

145 measurements of test samples were calibrated using chlorophyll a standards prepared from a 

146 stock solution of 4000 J..tg chi a /L (Sigma C-5753; range= 10-1280 J..tg chi aIL), kept protected 

147 from light in covered bottles and stored at -20°C. Prymnesium parvum densities were measured 

148 using light microscopy with a Leitz Dialux 20 microscope and an Improved Neubauer 

149 hemacytometer at 400X magnification (Southard, 2005). 

150 

151 Assess the Potential for Use of an Algaecide in Field Situations. In addition to efficacy 

152 

153 

154 

155 

156 

157 
158 
159 
160 

for the target species, an important consideration for field use of algaecides is the margin of 

safety (MOS) for non-target species (Murray-Guide et al., 2002). Effective algaecide 

concentrations for control of P. parvum were compared to toxicity data for sensitive, sentinel 

non-target species of fish and invertebrates to calculate margins of safety. For this study, the 

margin of safety was calculated as follows: 

MOS =Effective concentration for adverse effects on non-target organism 
Effective concentration for control of P. parvum 

Equation 1 

7 
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161 Thus aMOS :S 1 indicates potential for risks for non-target species, while aMOS> 1 indicates 

162 less potential for adverse effects to non-target species. 

163 

164 Confirm Algaecide Effectiveness in a Field Application. Application of algaecide for 

165 control of P. parvum in Water Ranch Lake (Gilbert, AZ) provided an opportunity to confirm the 

166 prediction from the laboratory testing. Water Ranch Lake is about 2.0 hectares (5 acres) with an 

167 average depth of 3.4 meters ( -11 feet) and is located at an elevation of 340 meters ( -1,100 feet). 

168 Sport fishing is important for this water resource (Arizona Game and Fish Department, 2007). 

169 Cutrine® -Plus was applied at a target concentration of 0.2 to 0.25 mg CulL. Responses of P. 

170 parvum were measured along with responses of non-target fish. 

171 

172 Statistical Analysis. A one-way analysis of variance (ANOV A) was used to determine 

173 differences in chlorophyll a concentrations and cell densities between treatments and untreated 

174 controls. Differences were discerned further using Dunnett's multiple range test. If data did not 

175 meet the assumptions for parametric testing, then a non-parametric ANOV A on ranked data was 

176 used followed by Dunn's multiple range test. All data were analyzed using SigmaStat version 3.1 

177 for Windows (alpha= 0.05) (Systat Software, Inc., Point Richmond, CA 94804-2028). 

178 

179 RESULTS AND DISCUSSION 

180 

181 Ichthyotoxin production by samples of P. parvum. lchthyotoxin was detected in all 

182 samples of P. parvum except the sample from City Lake near High Point, NC (Table 3). 

183 Although variance in P. parvum density was not sufficient to discern a correlation between cell 

8 
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1 
2 
r 

l 184 
"' 

density and ichthyotoxin production, the sample from NC with no measurable ichthyotoxin had 
5 
6 185 the lowest cell density (3.8 x 103 cells/mL) of the samples tested. The ichthyotoxin content of 7 
8 186 
9 

samples with P. parvum densities ranging from 1.4 x 104 cells/mL to 4. 7 x 104 cells/mL was 
10 

187 11 relatively potent with survival of P. promelas larvae in three of four samples only after dilution 
12 
13 188 of the water samples to 6.25%. Approximately 50% survival of fathead minnow larvae was 14 
15 189 
16 

observed in the sample from FL after dilution to 12.5%. The acute responses of fathead minnow 
17 

190 18 larvae to exposures in waters containing P. parvum in the absence of cofactor were indicative of 
19 
20 191 the potency of the ichthyotoxin at these sites. 
21 
22 192 
23 
24 
25 193 Responses of samples of P. parvum to algaecide exposures in laboratory tests. 26 
27 194 Measured concentrations of copper in treatments were within 12% of targeted concentrations, so 28 
29 195 all results are reported as targeted concentrations. Water characteristics for the samples were 

32 196 similar, except for the NC sample with notably lower ionic strength (Table 1). The water 33 
34 197 
35 

characteristics of these reservoirs and storm water lakes supporting P. parvum populations were 
36 

198 37 indicative of relatively nutrient rich systems that were moderately hard to hard waters except for 
38 
39 199 the reservoir in NC. This reservoir had been experiencing a period of drought during the time of 40 
41 200 
42 

this sampling. All of the samples of P. parvum were relatively sensitive to exposures of 
43 

201 44 Cutrine®-Plus with> 90% reduction in cell density at concentrations of0.2 mg CulL (Figure 1). 45 
46 202 The responses of these samples of P. parvum to copper sulfate and Phycomycin ®were 47 
48 203 49 significantly less in terms of cell density than for Cutrine®-Plus. Chlorophyll a concentrations in 
50 
51 204 treatments declined (Figure 2) paralleling results observed for P. parvum cell density. Cutrine®-52 
53 205 Plus was significantly more effective than copper sulfate or Phycomycin® in terms of decreasing 54 
55 206 56 chlorophyll a concentrations. Both copper sulfate and Phycomycin® were less effective for 
.&l7 

b::t 

60 9 
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1 
2 

4 
207 controlling the population growth of P. parvum. Samples treated with Cutrine®-Plus at 

5 
6 208 concentrations~ 0.2 mg CulL were examined 14 days after treatment and no regrowth of P. 
7 
8 
9 

209 parvum cells was observed. Since the other algaecides were not as effective for controlling P. 
10 
11 210 parvum, regrowth was not assessed. 
12 
13 211 
14 
15 
16 

212 Assess the Potential for Use of an Algaecide in Field Situations. Often an important 
17 
18 213 decision criterion for use of an algaecide to respond to an outbreak of P. pan,um is the MOS for 
19 
20 214 non-target species such as fish. For this study, MOS was defined as the ratio of the 21 
22 
23 

215 concentration of algaecide that adversely affects a sensitive, sentinel non-target fish and the 
24 
25 216 concentration required to control the population growth of P. parvum. AMOS :S1 indicates risk 
26 
27 217 to non-target species, while aMOS >1 indicates less potential for adverse effects to non-target 28 
29 

\ 
218 species. For this situation, we estimated aMOS of 3.5 based upon the ratio of the lowest I 

32 219 observed effect concentration (LOEC) for a 96-hour exposure of< 24-hour old Pimephales 
33 
34 
35 

220 promelas to Cutrine®-Plus (0.75 mg/L) and the concentration of Cutrine®-Plus required to 
36 
37 221 control the growth of P. parvum cells (0.2 mg/L). Aquatic invertebrates are equally or more 
38 
39 222 sensitive to exposures of Cutrine® -Plus, however aMOS> 1 exists for many of these species 
40 
41 
42 

223 (Table 4 ). Water resource managers considering applications of copper formulations for control 
43 
44 224 of P. parvum must also consider the relative risks and mitigate these risks where possible. 
45 
46 225 Currently, algaecides registered by the US Environmental Protection Agency for use in 47 
48 
49 

226 water resources include: acrolein, copper formulations, diquat dibromide, endothall formulations, 
50 
51 227 and peroxide formulations. The endothall formulations and acrolein are not compatible with 
52 
53 228 maintenance of fish or other aquatic life (i.e. noMOS) and are used as biocides in situations such 54 
55 
56 229 as irrigation canals. Diquat dibromide is not effective in aquatic systems that have suspended 
F.7 

o::J 

60 10 
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1 
2 
, 

I 230 . particulates that can bind the algaecide and render it not bioavailable. The copper formulations 
5 
6 23I registered as algaecides differ in degree of chelation as well as inclusion of adjuvants. 
7 
8 232 
9 

Concomitantly, their algaecidal effectiveness varies widely (Murray-Guide et al., 2002). As 

10 
233 11 indicated above, some copper formulations have a MOS for non-target species such as fish (P. 

12 
13 234 promelas MOS=4.3; Table 4) when site specific treatments are judiciously applied. Similarly, 
14 
15 235 
16 

peroxide formulations have aMOS but were not effective for controlling the population growth 
17 

236 18 of P. parvum. 
19 
20 237 The response of P. parvum to 0.2 to 0.25 mg CulL Cutrine®-Plus was rapid as was 
21 
22 238 
23 

mitigation of the toxin production and effects. Other control tactics that have been used in ponds 
24 
25 239 include treatment of P. parvum with ammonium sulfate (Barkoh et al., 2003). Ammonium 
26 
27 240 sulfate concentrations required to control P. parvum ( -O.I7 mg fL of un-ionized ammonia) may 28 
29 24I produce unionized ammonia concentrations that adversely affect some fish (Barkoh et al., 2004). 

32 242 In this study, copper sulfate was not as effective for P. parvum as the chelated copper 
33 
34 243 
35 

formulation. Neither barley straw nor Liquid Live Micro-Organisms ™ were effective for control 

36 
244 37 of P. parvum in pond situations in Texas (Barkoh et al., 2008). In laboratory tests (Grover et al., 

38 
39 245 2007), barley straw extract was also ineffective for P. parvum control, but relatively high 
40 
41 246 
42 

treatments of ammonium (0.72 mg NH4-N IL) were successful. Caution was offered regarding 
43 

247 44 potential adverse effects of relatively high concentrations of ammonia on non-target species. 
45 
46 248 Repeated treatments of ammonium chloride and phosphoric acid were somewhat successful for 
47 
48 249 
49 

controlling P. parvum growth in limnocorrals in aquaculture ponds (Kurten et al., 2007), 
50 
51 250 however the authors again indicated the potential for adverse effects on non-target species. 
52 
53 25I Suspended solids (mud), organic fertilizer (manure) and decreased salinity have also been used 54 
55 252 56 to control P. parvum in Chinese aquaculture of carp species (Guo et al., I996) with the best 
57 
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60 II 



1 
2 

·. 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
t=..7 

::>::I 

60 

JAWRA Draft Page 12 of26 

253 results from decreased salinity and ammonium sulfate. If application of an algaecide is indicated 

254 to mitigate risks from P. parvum, all regulatory approvals and permits must be obtained. 

255 

256 Confirm Algaecide Effectiveness in a Field Application. Use of site water with 

257 associated algae in the laboratory algal toxicity tests minimizes the potential for ambiguity in 

258 applying laboratory results directly to a field situation (Fitzgerald and Jackson, 1979). The mean 

259 water characteristics for Water Ranch Lake were pH 7.75, hardness 411 mg/L as CaC03, 

260 alkalinity 104 mg/L as CaC03, and conductivity 2700 J.1S/cm2
. The pre-treatment cell density of 

261 P. parvum was 4.6 x 104 cells/mL with a chlorophyll a concentration of 24 J..lg/L. Prior to 

262 treatment, ichthyotoxin production was likely present as indicated by the presence of dead fish 

263 and P. parvum. Within 24 - 48 hours after treatment, the cell density of P. parvum declined and 

264 was not detectable (<5 x 102 cells/mL), while the chlorophyll a concentration decreased to <10 

265 J..lg/L. Prymnesium parvum was not detected in Water Ranch Lake for two months and there was 

266 no recurrence of fish mortality. 

267 

268 SUMMARY 

269 

270 Toxin production by P. parvum is intermittent possibly due to genetic, density or 

271 environmental factors (Graneli and Johansson, 2003). "Triggers" for P. parvum ichthyotoxin 

272 production are not known, but they are perhaps connected to drought and other factors that alter 

273 ionic strength and composition of waters since P. parvum is now found in inland waters with 

274 lower ionic strength and ion composition differing from seawater. Not all water resources with 

275 detectable densities of P. parvum have sufficient ichthyotoxin to cause fish kills. Sager et al. 

12 



Page 13 of26 

1 
2 

JAWRA Draft 

r 276 (2007) noted that the golden alga can produce enough toxin to cause a fish kill when cell 
•, 
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densities are as low as 1.0 x 104 cells/mL, but fish losses in Texas typically have not occurred 

until algal density achieved 2.0 x 104 cells/mL or more. Based on laboratory and field 

observations, P. parvum ichthyotoxin is apparently not persistent since fish mortalities do not 

continue in the absence of the golden alga (Barkoh and Fries, 2005). These characteristics 

provide an opportunity to develop cell-free and toxin-free refugia for mobile species such as fish. 

Fish that have been sublethally exposed toP. parvum ichthyotoxin recover quickly when 

removed to uncontaminated water during the early stages of intoxication (Shilo, 1967). Based 

upon field observations, fish also have the ability to detect and avoid the toxin if a toxin-free 

refuge is available (Sarig, 1971 ). Lakes and ponds smaller than a few hundred hectares can be 

treated with algaecides successfully, but treatment of the entire water resource may not be 

economically feasible for larger or more complex lakes or reservoirs. Mention of a control tactic 

for toxin producing algae in this paper does not constitute endorsement of an algaecide or any 

other tactic for a specific situation. Local extension agents and authorities can provide 

information regarding site specific permit requirements and restrictions. Strategic use of 

algaecide in larger water resources could provide toxin-free refugia to allow some fish to survive 

and repopulate the water resource when the golden alga infestation abates. 
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Table 1. Characteristics of water samples containing Prymnesium parvum subjected to algaecide testing. Mean and (range) of four samples. 

pH Hardness Alkalinity Conductivity Dissolved Total Total Sample Oxygen Nitrogen Phosphorus Source su mg/L as mg/L as 
j..LS/cm mg/L mg/L j..lg/L CaC03 CaC03 

TX 8.27 312 130 1604 8.2 0.5 17 
(8.1 0-8.58) (260-328) (106-148) (1580-1710) (7.8-9.0) (0.2-1.4) (1-28) sc 7.65 140 110 3600 8.7 0.4 8 
(7.28-7.88) (106-160) (90-144) (2400-3860) (8.2-9.3) (0.2-0.8) (1-16) 

AZ 7.75 411 104 2700 7.8 0.2 13 
(7.21-8.12) (346-438) (92-124) (2460-2840) (7.4-8.2) (0.1-0.4) (1-18) 

FL 8.10 186 240 1860 8.6 0.4 9 
(7.10-8.28) (162-218) (180-260) (1680-2210) (8.2-9.2) (0.2-0.8) (2-12) 

NC 7.75 40 50 125 8.8 0.2 3 
(7.16-7.90) (30-50) (42-56) (85-138) (8.0-9.5) (0.1-0.5) (1-8) 

20 



Page 21 of 2 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
LI.Q 

419 
420 

421 
422 

JAWF raft 

Table 2. Physical properties of Cutrine-Plus®, copper sulfate pentahydrate, and Phycomycin® (Applied Biochemists, 2007 a,b; 
Hohman & Martin, 1995). 
Properties Cutrine-Plus® 
%active ingredient 9.0 (elemental Cu) 
Application rate 0.2-1.0 mg CulL 

Formulation 

Chemical Class 

Mode of action 
Water solubility 
(mg/L) 
pH 

copper -ethanolamine complex 

chelated elemental copper 
(Cu2C03) 
cell toxicant 
Complete 

10.0-11.0 

Copper Sulfate 
25.4 (elemental Cu) 
0.05-0.5 mg CulL 

CuS04-5H20 

copper salt 

cell toxicant 
316,000 

NA 

Phycomycin® 
85 (as sodium carbonate peroxyhydrate) 
0.2-10.2 mg/L as H202 

sodium carbonate peroxyhydrate 

oxidating agent 

cell toxicant 
complete 

10.4-10.6 at a concentration of 1% 
solution 
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Table 3. Survival of Pimephales promelas in Prymnesium parvum ichthyotoxin assays. 

P. parvum % Survival Pimephales promelas 
Sample Density in SamEle Dilution(% SamEle) 
Source (cells/mL) 100% 50% 25% 12.50% 6.25% 0% 

TX 1.4 X 104 0 0 0 0 42 100 

sc 1.4 X 104 0 0 0 0 40 100 

AZ 4.7 X 104 0 0 0 0 30 97 

FL 2.8 X 104 
0 0 35 47 65 100 

NC 3.8 X 103 100 100 95 100 100 95 
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Table 4. Toxicity of Cutrine Plus® to sentinel non-target species and margins of safety associated with use of this algaecide. EC50 values (effective concentration for 50% of the population) are based on acid-soluble copper concentrations. Margin of safety was defined in Equation 1 [ECso value divided by the concentration required to control the growth of Prymnesium parvum (200J..tg CulL)]. 
Test Duration ECso Margin of 

Organism (hours) (ug CulL) Safety Citation 
Ceriodaphnia dubia 96 124 0.6 Murray-Guide et al. 2002a 
Chironomus tentansc 48 460.9 2.3 Mastin and Rodgers 2000b 
Hyalella aztecad 48 247.8 1.2 Mastin and Rodgers 2000b 
Pimephales promelas 96 863 4.3 Murray-Guide et al. 2002a 
Lepomis macrochirus 96 13,300 66.5 Applied Biochemists 2007ac 
Lepomis macrochirus 96 83,000 415 Applied Biochemists 2007ad a Water chemistry (Murray-Guide et al. 2002) alkalinity (18-424 mg CaCOyiL), hardness (8-212 mg CaCO/L), conductivity (83-9,750f.!S/cm), pH (6-8.1) bWater chemistry (Mastin and Rodgers 2002) alkalinity (55-96 mg CaCOyiL), hardness (48-96 mg CaCOyiL), conductivity (270-450 f.IS/cm), pH (6.4-8.0) "Chironomus tentans is a benthic infaunal organism that constructs a case from organic material from which it feeds during its larval stage. d Hayella azteca is an epibenthic detritivore that feeds on organic material on the sediment surface. 

c Total Harness 48 ppm 
d Total Hardness 200 ppm 
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Figure I. Responses (cell densities) of Prymnesium parvum in samples from Texas, Arizona, 
Florida, North Carolina, and South Carolina to 96-hour exposures ofCutrine®-Plus, copper 
sulfate pentahydrate, and Phycomycin®. * indicates Non-Detect value ( <1000 cells/mL). Error 
bars represent one standard deviation. 

Figure 2. Responses (chlorophyll a concentrations) of Prymnesium parvum samples from Texas, 
Arizona, Florida, North Carolina, and South Carolina to 96-hour exposures of Cutrine®-Plus, 
copper sulfate pentahydrate, and Phycomycin®. Error bars represent one standard deviation. 
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